Eğitim Adı: Applied AIOps Bootcamp
Eğitim Süresi: 16 Gün / 128 Saat / Cumartesi Günleri + 10 Online Video Ders
Tarihler: 25.01.2024-10.05.2025
Eğitim Şekli: Canlı Online Ders
Eğitimin Amacı: Eğitimin amacı, geleneksel ve üretken yapay zeka tekniklerini derinlemesine öğrenerek, pratik uygulamalı projeler aracılığıyla bu teknolojilerin geliştirilmesi, etkin kullanımı ve yenilikçi yapay zeka uygulamalarının hayata geçirilmesi konularında katılımcılara yetkinlik kazandırmaktır.
Eğitimimiz ücretlidir. Lütfen fiyat bilgisi almak için en alt kısımda yer alan formu doldurun.
Online Canlı Eğitim İçeriği
Part 1: Python
Module 1: Language Overview
Module 2: Standard Data Types
Module 3: Flow Control
Module 4: Functions
Module 5: Lists and Tuples
Module 6: Dictionaries
Module 7: External Libraries
Module 8: Basic File Operations
Module 9: Exception Handling
Module 10: OS Operations & File Management
Module 11: Advanced Algorithms
Module 12: Log File Index Management
Module 13: Python Code Index Management At Any Folder
Module 14: Object Oriented Programming: Encapsulation & Inheritance
Part 2: REST API With Python
Module 1: What is Model Driven Automation
Module 2: What is HTTP ?
Module 3: How HTTP works ?
Module 4: What is Rest API
Module 5: What are API Data Formats?
Module 6: List Comprehension
Module 7: Parsing JSON With Postman
Module 8: Parsing Capital Cities JSON With Python
Module 9: Parsing Star War JSON With Python
Module 10: Parsing Game Of Thrones JSON With Python
Module 11: Parsing Public Colorado Population API With Python
Module 12: Parsing News API With Python
Module 13: Parsing NASA API With Python
Module 14: Working With Open AI API
Module 15: Parsing API With Postman
Module 16: Parsing Forex API & Bitcoin API With Python
Part 3: Data Science
Module 1: What is AI, Data Science, Machine Learning, Deep Learning
Module 2: Creating Data Frames From JSON, Python Data Types, Excel, CSV
Module 3: Working With Numpy
Module 4: Managing Data Frames With Pandas and Numpy
Module 5: Data Frame Append, Concat, Transpose
Module 6: Pandas Values, value_counts, unique, nunique
Module 7: Sorting Data With Multiple Queries at Data Frames IMKB Stock Market
Module 8: Pandas Group By
Module 9: Analyzing Big Data With Python
Module 10: Intro to Matplotlib(plot, scatter, bar)
Module 11: Matplotlib Subplots & Pie
Module 12: Matplotlib With Yfinance For Stock Market Visualization
Module 13: Customize Time Series Colorado Lab (rotation, indent, time format)
Module 14: Matplotlib Annotate & Arrowprops
Module 15: Advanced 3D Visualization With Matplotlib
Module 16: Data Visualization With Plotly
Module 17: Plotly With Size & Trendline Ordinary Least Squares Regression
Module 18: Data Visualization With Seaborn
Module 19: Data Analysis Heart Attack
Module 20: Data Analysis Covid19
Module 21: Data Analysis Iphone Sales
Module 22: Project Data Analysis NYC Service Requests
Module 23: Project Data Analysis Netflix
Module 24: Project Data Analysis AAL Sales Analysis
Module 25: Data Analysis GDP(Gross Domestic Product)
Module 26: Data Analysis Financial Risk Analysis Of Mutual Funds Investments.
Module 27: Data Analysis Turkish Stock Market With Technical Indicators(SMA20,EMA20,RSI,MACD,HMA)
Module 28: Data Analysis Investment Portfolio Management
Part 5: Machine Learning With Python
Module 1: What is Machine Learning
Module 2: Machine Learning Methods
Module 3: Supervised Machine Learning Linear Regression
Module 4: Supervised Machine Learning Polynomial Regression
Module 5: Multiple Linear Regression
Module 6: Multiple Polynomial Regression
Module 7: How to Save Data Model and Load
Module 8: Stock Market Prediction With Linear Regression
Module 9: Standard Scaler
Module 10: Lasso
Module 11: Cross Validation & Pipeline
Module 12: Supervised Machine Learning Classification
Module 13: Label Encoder & Logistic Regression: Titanic
Module 14: Advanced Momentum Trading Strategies Via Candlestick Formations With RandomForestClassifier
Module 15: Multiple Text Classification With Machine Learning
Module 16: RFM Analysis/Hierarchical Clustering/Customer Segmentation
Module 17: Multi Layer Perceptron
Part 6: Deep Learning With Python
Module 1: Introduction To Deep Neural Networks
Module 2: How to Design Deep Neural Networks
Module 3: House Price Prediction With Artificial Neural Networks & Early Stop Callback
Module 4: One Hot Encoder & Multiple Classification With Artificial Neural Networks
Module 5: Heart Attack Prediction With Artificial Neural Networks& Multiple Early Stop Callbacks
Module 6: Intent Classification Assistant Chatbot With Artificial Neural Networks & Natural Language Processing
Module 7: Convolutional Neural Networks
Module 8: Digit Detection With Artificial Neural Networks: Mnist Dataset
Module 9: Data Preprocessing & Data Modelling For Image Processing
Module 10: Object Detection With Python
Module 11: Recurrent Neural Networks and LSTM
Module 12: Stock Market Prediction With Recurrent Neural Networks and LSTM
Module 13: Financial Anomaly Detection With Prophet
Module 14: Stock Market Prediction With Prophet
Module 12: Network Anomaly Detection With Recurrent Neural Networks and LSTM
Module 13: Spam Email Classifier Recurrent Neural Networks and LSTM
Module 14: Deep Reinforcement Learning Stock Market Management
Part 7: Generative AI:
Module 1: What is Generative AI?
Module 2: The differences Of Generative AI From Traditional AI
Module 3: Semantic Similarity
Module 4: Sentimental Classification (Positive, Negative, Neutral)
Module 5: Summarization of Text
Module 6: Intent-Classification
Module 7: Summarization of Generated Code
Module 8: Text-Generation
Module 9: Auto-Encoders
Module 10: Credit Card Fraud Detection with Autoencoders
Module 11: Working With Large Language Model LLama 3.3 through Ollama
Module 12: Document-Based Question Answering With Ollama, LLama3.3, Qdrant, Litserve and Gradio
Module 13: Data Analysis With Ollama, LLama3.3 and flask-restx
Module 14: Transforming Vast Data into Actionable Insights with AI-Powered Business Intelligence via LLama3.3 and Streamlit
Module 15: Finetune LLama3.3 With LoRa & Quantization
Module 16: Working With Llama 3.3 Vision
Module 17: Finetune Llama 3.3 Vision with custom dataset
Bonus Online Video Eğitim İçeriği
Part 1: HTML Parsing With Python
Module 1: How HTML Parsing Works?
Module 2: HTML Parsing For imdb.html
Module 3: HTML Parsing For StackOverFlow
Module 4: HTML Parsing For GitHub
Part 2: RegEx With Python
Module 1: Parsing Star Wars Episode 3 Scenario
Module 2: Parsing Words.txt with RegEx
Module 3: RegEx search match group
Module 4: Parsing Emails With RegEx.
Part 3: Email With Python
Module 1: smtplib & email.message
Module 2: Yagmail
Module 3: Attached Email with Email.Message
Module 4: Time Scheduled Mail
Module 5: Bitcoin Api Auto Alarm Management With Email
Module 6: Email With Excel
Module 7: Sending attached file as html in email
Module 8: Sending Email within VPN
Part 4: Excel With Python
Module 1: Create Excel With Openpyxl
Module 2: Creating Data Frame From Excel
Module 3: Copy Sheet-Delete Row & Columns at Excel
Module 4: Seperate & Save Sheets As New WorkBooks at Excel
Module 5: Merge & Seperate Workbooks into New Workbooks at Excel
Module 6: Excel to TXT
Module 7: Receive Specific Data From Excel Sheets at Excel Workbook.
Part 5: GUI Development With Tkinter
Module 1: Creating Widget With Tkinter Lab
Module 2: Restaurant Menu With Tkinter Lab
Module 3: Weather Application With Tkinter, SQL & JSON
Module 4: Making Mp3 Player Application With Tkinter
Module 5: Managing Charts With Tkinter
Module 6: Managing Hyperlinked URLs With Tkinter
Module 7: Making Finance Dashboard Application With Tkinter
Module 8: Multiple Digit Detection App With Tkinter
Part 6: API Development With Flask-Restx
Module 1: Introduction to Flask & How Web Server Works?
Module 2: API Development with Flask RestX
Module 3: API Endpoint & Query Parameters Management With Flask-RESTX Reqparse
Module 4: API Endpoint & Query Parameters With Multiple Choices by Flask-RESTX Reqparse
Module 5: Sql With Python CRUD(Create, Read, Update, Delete)
Module 6: Parsing IMDB Sql Database With Python
Module 7: SQL & API Integration: Get/Post/Put/Patch/Delete
Module 8: Flask-RESTX Upload/Display/Download Photo
Module 9: Flask-RESTX Upload/Display/Download Excel
Module 10: Flask-RESTX Chatbot With OpenAI
Module 11: Flask-RESTX Chatbot With NewsAPI
Part 7: Linux
Module 1: Login: How to login and gather info about system
Module 2: History: Linux History and Distributions
Module 3: Basic Management Commands: alias, ls, cd, pwd
Module 4: BASH: Shell types: Bourne, Korn, Bash, Set Shell variables, env
Module 5: BASH: I/O Redirection: stdin, stdout, stderr, and sudo
Module 6: VI: Vi editor basic and advanced features
Module 7: Permissions
Module 8: Archiving: tar, gzip, bzip2, xz
Module 9: Installation: Linux operating system installation
Module 10: Filesystem Management
Module 11: Services: Management
Module 12: Account Management
Module 13: Process Management
Module 14: Software Management
Module 15: Log Management
Part 8: API Management With DevSecOps
Module 1: Implementing PostGreSQL
Module 2: PostGreSQL With Python
Module 3: Basic Authentication
Module 4: Device Management API With PostGreSQL, HTTPS & Basic Authentication
Module 5: Vault
Module 6: Device Management API With PostGreSQL, HTTPS, Vault and Basic Authentication
Module 7: Device Management API With PostGreSQL, HTTPS, Vault and Json Web Token
Module 8: Device Management API With PostGreSQL, HTTPS, Vault, Json Web Token and LDAP Server
Module 9: Device Management API With PostGreSQL, HTTPS, Vault, Two Factor Authentication and LDAP Server
Part 9: Open AI API
Module 1: Text & Code Generation With Open AI API
Module 2: Generating Photo With Open AI API
Module 3: Ask Questions About Photo With Open AI API
Module 4: Change Current Photo Details With Open AI API
Module 5: Generating Video With Open AI API
Module 6: Ask Questions About Video With Open AI API
Module 7: Change Current Video Details With Open AI API
Module 8: Working With Webex API
Module 9: Webex API Integration With Open AI API
Module 10: Text To Speech & Speech To Text With Open AI API
Module 11: Data Analysis With Open AI API
Module 12: Chat With Your Documents via Open AI API and Gradio
Module 13: Transforming Vast Data into Actionable Insights with AI-Powered Business Intelligence via Open AI API and Streamlit
Module 14: Gradio User Login & Open AI API
Module 15: Streamlit User Login & Open AI API
Module 16: Making AI Chatbot Application With Tkinter & Open AI API
Part 10: Docker
Module 1: Docker-Computing Evolution
Module 2: Docker-Software & Application Development-Waterfall versus Agile
Module 3: Docker-Software Test Types
Module 4: Docker-Construct A Python Unit Test Lab
Module 5: Docker-Introduction to DevOps
Module 6: Docker-Kubernetes Architecture
Module 7: Docker Architecture
Module 8: Docker on Linux Mac Windows
Module 9: How Docker Works
Module 10: Docker Host Installation On Centos v7.0
Module 11: NGINX Web Service Container Installation
Module 12: Interpret A Dockerfile
Module 13: Working With Container Images & Docker Hub
Module 14: Containerize Flask Web Service
Module 15: Containerize Flask Web Service With Virtual Environment
Module 16: Containerize An API
Module 17: Docker Cluster Services
Module 18: Container Network
Module 19: Volumes
Module 20: Containerize An Application Using Docker
Module 21: Docker-Compose
Module 22: Docker Swarm
Module 23: Containerize An AI Chatbot
Module 24: Load Balance An AI Application
Applied AIOps Bootcamp Başvuru Formu
Adınız ve Soyadınız | |
E-Posta Adresiniz | |
Telefon Numarası | |
Çalıştığınız Yer | |
Okuduğunuz Okul |