Eğitim Adı: Applied AI Systems Engineering Bootcamp
Eğitim Süresi: 24 Gün / 192 Saat / Cumartesi Günleri + Bonus Online Video Dersler
Tarihler: 27.12.2025-20.06.2026
Eğitim Şekli: Canlı Online Ders
Eğitimin Amacı: Bu bootcamp, katılımcılara yapay zekâ modellerinin ötesine geçerek, onları gerçek dünyada çalışabilen sistemlere dönüştürme becerisi kazandırır. Python, ML/DL, Generative AI ve Agentic AI tekniklerini; REST API’ler, Docker container’lar, Qdrant veritabanı, LDAP kimlik doğrulama, loglama ve çoklu ajan mimarileriyle birleştirerek, kurumsal ölçekte AI çözümleri geliştirmenizi sağlar. Katılımcılar, program sonunda AI modellerini, altyapıyı ve otomasyonu bir arada yöneten mühendisler haline gelirler.
Eğitimimiz ücretlidir. Lütfen fiyat bilgisi almak için en alt kısımda yer alan formu doldurun.
Online Canlı Eğitim İçeriği
Part 1: Python
Module 1: Language Overview
Module 2: Standard Data Types
Module 3: Flow Control
Module 4: Functions
Module 5: Lists and Tuples
Module 6: Dictionaries
Module 7: External Libraries
Module 8: Basic File Operations
Module 9: Exception Handling
Module 10: OS Operations & File Management
Module 11: Advanced Algorithms
Module 12: Log File Index Management
Module 13: Python Code Index Management At Any Folder
Module 14: Object Oriented Programming: Encapsulation & Inheritance
Part 2: REST API With Python
Module 1: What is Model Driven Automation
Module 2: What is HTTP ?
Module 3: How HTTP works ?
Module 4: What is Rest API
Module 5: What are API Data Formats?
Module 6: List Comprehension
Module 7: Parsing JSON With Postman
Module 8: Parsing Capital Cities JSON With Python
Module 9: Parsing Star War JSON With Python
Module 10: Parsing Game Of Thrones JSON With Python
Module 11: Parsing Public Colorado Population API With Python
Module 12: Parsing News API With Python
Module 13: Parsing NASA API With Python
Module 14: Working With Open AI API
Module 15: Parsing API With Postman
Module 16: Parsing Forex API & Bitcoin API With Python
Part 3: Data Science
Module 1: What is AI, Data Science, Machine Learning, Deep Learning
Module 2: Creating Data Frames From JSON, Python Data Types, Excel, CSV
Module 3: Working With Numpy
Module 4: Managing Data Frames With Pandas and Numpy
Module 5: Data Frame Append, Concat, Transpose
Module 6: Pandas Values, value_counts, unique, nunique
Module 7: Sorting Data With Multiple Queries at Data Frames IMKB Stock Market
Module 8: Pandas Group By
Module 9: Analyzing Big Data With Python
Module 10: How HTML Parsing Works?
Module 11: HTML Parsing For imdb.html
Module 12: HTML Parsing For StackOverFlow
Module 13: HTML Parsing For GitHub
Module 14: Intro to Matplotlib(plot, scatter, bar)
Module 15: Matplotlib Subplots & Pie
Module 16: Matplotlib With Yfinance For Stock Market Visualization
Module 17: Customize Time Series Colorado Lab (rotation, indent, time format)
Module 18: Matplotlib Annotate & Arrowprops
Module 19: Advanced 3D Visualization With Matplotlib
Module 20: Data Visualization With Plotly
Module 21: Plotly With Size & Trendline Ordinary Least Squares Regression
Module 22: Data Visualization With Seaborn
Module 23: Data Analysis Heart Attack
Module 24: Data Analysis Covid19
Module 25: Data Analysis Iphone Sales
Module 26: Project Data Analysis NYC Service Requests
Module 27: Project Data Analysis Netflix
Module 28: Project Data Analysis Sales Analysis
Part 4: Machine Learning With Python
Module 1: What is Machine Learning
Module 2: Machine Learning Methods
Module 3: Supervised Machine Learning Linear Regression, Polynomial Regression
Module 4: Multiple Linear Regression, Multiple Polynomial Regression
Module 5: How to Save Data Model and Load
Module 6: Random Forest Regression, XGBoost Regression
Module 7: Standard Scaler
Module 8: Lasso
Module 9: Cross Validation & Pipeline
Module 10: Supervised Machine Learning Classification: Label Encoder & Logistic Regression
Module 11: Supervised Machine Learning Classification: Decision Tree Classifier
Module 12: Cross Validation For Logistic Regression, Decision Tree Classifier, GaussianNB, SVC, Random Forest Classifier, K Neighbors Classifier, XGBoost Classifier
Module 13: Multi Layer Perceptron
Module 14: Unsupervised Machine Learning: K means Clustering
Module 15: Unsupervised Machine Learning: RFM Analysis/Hierarchical Clustering/Customer Segmentation
Part 5: Deep Learning With Python
Module 1: Introduction To Deep Neural Networks
Module 2: How to Design Deep Neural Networks
Module 3: Regression With Artificial Neural Networks & Early Stop Callback
Module 4: One Hot Encoder & Multiple Classification With Artificial Neural Networks
Module 5: Binary Classification With Artificial Neural Networks & Multiple Early Stop Callbacks
Module 6: Convolutional Neural Networks
Module 7: Data Preprocessing & Data Modelling For Image Processing
Module 8: Digit Detection With Artificial Neural Networks: Mnist Dataset
Module 9: Object Detection With Python
Module 10: Recurrent Neural Networks and LSTM
Module 11: Sales Prediction With Recurrent Neural Networks and LSTM
Module 12: Network Anomaly Detection With Recurrent Neural Networks and LSTM
Module 13: Stock Market Prediction With Prophet
Module 14: Network Anomaly Detection With Prophet
Part 6: Generative AI:
Module 1: What is Generative AI/Generative vs Traditional AI
Module 2: Embeddings: Text Embeddings & Token Embeddings
Module 3: How To Use Open AI API
Module 4: Text & Code Generation With Open AI API
Module 5: Generating Photo With Open AI API
Module 6: Ask Questions About Photo With Open AI API
Module 7: Change Current Photo Details With Open AI API
Module 8: Generating Video With Open AI API
Module 9: Ask Questions About Video With Open AI API
Module 10: Change Current Video Details With Open AI API
Module 11: Working With Webex API
Module 12: Webex API Integration With Open AI API
Module 13: Text To Speech & Speech To Text With Open AI API
Module 14: Data Analysis With Open AI API & Autonomous Code Generation Agent AutoGen
Module 15: How To Use Gemini API
Module 16: Semantic Similarity With Open Source LLMs
Module 17: Sentiment Classification With Open Source LLMs
Module 18: Text Summarization With Open Source LLMs
Module 19: Intent Classification With Open Source LLMs
Module 20: Code Summarization With Open Source LLMs
Module 21: Text Generation With Open Source LLMs
Module 22: Working with Open Source LLMs via Ollama
Module 23: Finetune Open Source LLMs With LLMs
Module 24: Working With Open Source Vision LLMs
Module 25: Finetune Open Source Vision LLMs With Quantization & LoRa
Module 26: Reasoning Models
Part 7: API Development With Python:
Module 1: API Development With Flask-RestX
Module 2: Rest API Query Management At API Development
Module 3: HTTPS: SSL Certificate Creation With Python At Ubuntu
Module 4: Rest API With HTTPS
Module 5: Uploading & Downloading Excel/CSV/JSON Files With Flask-RestX
Module 6: Sql With Python CRUD(Create, Read, Update, Delete)
Module 7: PostGreSQL Insallation At Ubuntu
Module 8: PostGreSQL Configuration At Ubuntu
Module 9: PostGreSQL With Python
Module 10: LDAP With Python
Module 11: Developing Database Management API With HTTPS, Vault, Json Web Token, LDAP & PostGreSQL
Module 12: Accessing Database Management API via Python With HTTP Methods: Get, Post, Put, Patch, Delete
Part 8: Docker:
Module 1: What is Docker?
Module 2: How Docker & Container Works
Module 3: Managing Nginx Container
Module 4: Docker Network
Module 5: Docker Volume
Module 6: Containerize Web Services With Docker
Module 7: Containerize API With Docker
Module 8: Deploy Database Management Services With Load-Balancing, Containerized API, PostGreSQL andLDAP
Part 9: Agentic AI:
Module 1: What is Agentic AI?
Module 2: Ollama Container LLMs
Module 3: Llamafile Container LLMs
Module 4: Tool Calling
Module 5: FastMCP & MCP Server
Module 6: LangGraph ReAct Agent
Module 7: Multi-Agent Orchestration
Module 8: Intent Classification with Agents
Module 9: Ollama Container Agents & MCP Server
Module 10: Llamafile Container Agents & MCP Server
Module 11: Automation Agent With MCP Server
Module 12: Gradio With Open AI API
Module 13: Agent-based RAG
Module 14: Document QA (Token Embeddings LLM+Text Embeddings LLM+Faiss/Chroma+Gradio)
Module 15: Document QA With Ollama Containers +Faiss/Chroma + Gradio
Module 16: Document QA With Llamafile Containers +Faiss/Chroma + Gradio
Module 17: How Qdrant Works?
Module 18: Document QA (Token Embeddings LLM+Text Embeddings LLM+ Qdrant +Gradio)
Module 19: Document QA With Ollama Containers + Qdrant + Gradio
Module 20: Document QA With Llamafile Containers + Qdrant + Gradio
Module 21: Multi-Document Conversational RAG With Qdrant & Open AI API
Module 22: Multi-Document Conversational RAG With Qdrant & Llamafile Containers
Module 23: Reasoning RAG With GPT OSS 20B
Module 24: Data Analysis With Llamafile Containers + Autonomous Code Generation Agent AutoGen
Module 25: Streamlit Llamafile Containers
Module 26: Containerize, Secure, Scale RAG Application With Qdrant and OpenAI API
Module 27: Containerize, Secure, Scale RAG Application With Qdrant and Open Source LLMs
Bonus Online Video Eğitim İçeriği
Part 1: RegEx With Python
Module 1: Parsing Star Wars Episode 3 Scenario
Module 2: Parsing Words.txt with RegEx
Module 3: RegEx search match group
Module 4: Parsing Emails With RegEx.
Part 2: Email With Python
Module 1: smtplib & email.message
Module 2: Yagmail
Module 3: Attached Email with Email.Message
Module 4: Time Scheduled Mail
Module 5: Bitcoin Api Auto Alarm Management With Email
Module 6: Email With Excel
Module 7: Sending attached file as html in email
Module 8: Sending Email within VPN
Part 3: Excel With Python
Module 1: Create Excel With Openpyxl
Module 2: Creating Data Frame From Excel
Module 3: Copy Sheet-Delete Row & Columns at Excel
Module 4: Seperate & Save Sheets As New WorkBooks at Excel
Module 5: Merge & Seperate Workbooks into New Workbooks at Excel
Module 6: Excel to TXT
Module 7: Receive Specific Data From Excel Sheets at Excel Workbook.
Part 4: GUI Development With Tkinter
Module 1: Creating Widget With Tkinter Lab
Module 2: Restaurant Menu With Tkinter Lab
Module 3: Weather Application With Tkinter, SQL & JSON
Module 4: Making Mp3 Player Application With Tkinter
Module 5: Managing Charts With Tkinter
Module 6: Managing Hyperlinked URLs With Tkinter
Module 7: Making Finance Dashboard Application With Tkinter
Module 8: Multiple Digit Detection App With Tkinter
Part 5: Linux
Module 1: Login: How to login and gather info about system
Module 2: History: Linux History and Distributions
Module 3: Basic Management Commands: alias, ls, cd, pwd
Module 4: BASH: Shell types: Bourne, Korn, Bash, Set Shell variables, env
Module 5: BASH: I/O Redirection: stdin, stdout, stderr, and sudo
Module 6: VI: Vi editor basic and advanced features
Module 7: Permissions
Module 8: Archiving: tar, gzip, bzip2, xz
Module 9: Installation: Linux operating system installation
Module 10: Filesystem Management
Module 11: Services: Management
Module 12: Account Management
Module 13: Process Management
Module 14: Software Management
Module 15: Log Management
Part 6: Docker
Module 1: Docker-Computing Evolution
Module 2: Docker-Software & Application Development-Waterfall versus Agile
Module 3: Docker-Software Test Types
Module 4: Docker-Construct A Python Unit Test Lab
Module 5: Docker-Introduction to DevOps
Module 6: Docker-Kubernetes Architecture
Module 7: Docker Architecture
Module 8: Docker on Linux Mac Windows
Module 9: How Docker Works
Module 10: Docker Host Installation On Centos v7.0
Module 11: NGINX Web Service Container Installation
Module 12: Interpret A Dockerfile
Module 13: Working With Container Images & Docker Hub
Bonus: API Development With Python
Module 14: Containerize Flask Web Service
Module 15: Containerize Flask Web Service With Virtual Environment
Module 16: Containerize An API
Module 17: Docker Cluster Services
Module 18: Container Network
Module 19: Volumes
Module 20: Containerize An Application Using Docker
Module 21: Docker-Compose
Module 22: Docker Swarm
Module 23: Containerize An AI Chatbot
Module 24: Load Balance An AI Application
Part 7: RAG in Azure with OpenAI API
Module 1: Creating Azure resources using the portal
Module 2: Creating Azure resources using command line
Module 3: Connecting to OpenAI API
Module 4: Counting the tokens for all documents
Module 5: Cleaning the markdown files
Module 6: Creating the embedding vector
Module 7: Chunking the documents to lower the number of tokens
Module 8: Creating Search Index in Azure AI Search
Module 9: Uploading the chunks to AI Search
Module 10: Searching using Vector embedding
Module 11: Chatting with OpenAI API with documents
Applied AI System Engineering Bootcamp Index Başvuru Formu
| Adınız ve Soyadınız | |
| E-Posta Adresiniz | |
| Telefon Numarası | |
| Çalıştığınız Yer | |
| Okuduğunuz Okul |