Eğitimimiz ücretlidir.
Katılım ücretini öğrenmek için lütfen en altta yer alan formu doldurun
Eğitim Adı: Yapay Zeka İle Sermaye Piyasaları Yönetimi
Eğitim Süresi: 24 Gün / 168 Saat / Cumartesi Günleri
Tarihler: 21.12.2024-31.05.2025
Eğitim Şekli: Canlı Online Ders
Eğitimin Amacı: Eğitimin amacı yapay zekanın sermaye piyasalarında nasıl kullanılacağını pratik olarak öğretmektir.
Kurs İçeriği
Part 1: Python
Module 1: Language Overview
Module 2: Standard Data Types
Module 3: Flow Control
Module 4: Functions
Module 5: Lists and Tuples
Module 6: Dictionaries
Module 7: External Libraries
Module 8: Basic File Operations
Module 9: Exception Handling
Module 10: OS Operations & File Management
Module 11: Advanced Algoritms
Module 12: Log File Index Management
Module 13: Python Code Index Management At Any Folder
Module 14: Object Oriented Programming: Encapsulation & Inheritance
Part 2: REST API With Python
Module 1: What is Model Driven Automation
Module 2: What is HTTP ?
Module 3: How HTTP works ?
Module 4: What is Rest API
Module 5: What are API Data Formats?
Module 6: List Comprehension
Module 7: Parsing JSON With Postman
Module 8: Parsing Capital Cities JSON With Python
Module 9: Parsing Star War JSON With Python
Module 10: Parsing Game Of Thrones JSON With Python
Module 11: Parsing Public Colorado Population API With Python
Module 12: Parsing News API With Python
Module 13: Parsing NASA API With Python
Module 14: Working With Open AI API
Module 15: Working With Webex API
Module 16: Webex API Integration With OPEN AI API
Module 17: Parsing API With Postman
Module 18: Parsing Forex API & Bitcoin API With Python
Part 3: Data Science
Module 1: What is AI, Data Science, Machine Learning, Deep Learning
Module 2: Creating Data Frames From JSON, Python Data Types, Excel, CSV
Module 3: Managing Data Frames With Pandas and Numpy(Add/Delete/Change Index&Columns&Values)
Module 4: DataFrame Append, Concat, Transpose
Module 5: Pandas Values, value_counts, unique, nunique
Module 6: Sorting Data With Multiple Queries at Data Frames IMKB Stock Market
Module 7: Excel With Python (Create Excel, Merge, Copy, Split Excel Files)
Module 8: Pandas Group By
Module 9: Working With Numpy
Module 10: Analysing Big Data With Python
Module 11: HTML Parsing For imdb.html
Module 12: HTML Parsing For StackOverFlow & GitHub Pages
Module 13: Regular Expressions Search, Match & Group
Module 14: Parsing Emails With Regex
Module 15: Intro to Matplotlib(plot, scatter, bar)
Module 16: Matplotlib Subplots & Pie
Module 17: Matplotlib With Yfinance For Stock Martket Visualization
Module 18: Customize Time Series Colorado Lab (rotation, indent, time format)
Module 19: Matplotlib Annotate & Arrowprops
Module 20: Advanced 3D Visualization With Matplotlib
Module 21: Data Visualization With Plotly
Module 22: Plotly With Size & Trendline Ordinary Least Squares Regression
Module 23: Data Visualization With Seaborn (scatterplot, barplot, lineplot, heatmap, pairplot, distplot, catplot, boxplot)
Module 24: Sql With Python CRUD(Create, Read, Update, Delete)
Module 25: Parsing IMDB Sql Database With Python
Module 26: Data Analysis Heart Attack
Module 27: Data Analysis Covid19
Module 28: Data Analysis Iphone Sales
Module 29: Data Analysis NYC Service Requests
Module 30: Data Analysis Netflix
Module 31: Data Analysis GDP(Gross Domestic Product)
Module 32: Data Analysis Financial Risk Analysis Of Mutual Funds Investments.
Module 33: Data Analysis Turkish Stock Market With Technical Indicators(SMA20,EMA20,RSI,MACD,HMA)
Module 34: Data Analysis Investment Portfolio Management
Part 4: Application Development With Tkinter
Module 1: Creating Widget With Tkinter Lab
Module 2: Restaurant Menu With Tkinter Lab
Module 3: Weather Forecast Application With Tkinter, SQL & JSON
Module 4: Making Mp3 Player Application With Tkinter
Module 5: Managing Charts With Tkinter
Module 6: Managing Hyperlinked URLs With Tkinter
Module 7: Making Finance Assistant Dashboard With Tkinter
Module 8: Introduction to Flask & How Web Server Works?
Module 9: API Development with Flask RestX
Module 10: API Endpoint & Query Parameters Management With Flask-RESTX Reqparse
Module 11: API Endpoint & Query Parameters With Multiple Choices by Flask-RESTX Reqparse
Module 12: SQL & API Integration: Get/Post/Put/Patch/Delete
Module 13: Flask-RESTX Upload/Display/Download Photo
Module 14: Flask-RESTX Upload/Display/Download Excel
Module 15: Flask-RESTX Chatbot With OpenAI
Module 16: Email With Python
Part 5: Machine Learning With Python
Module 1: What is Machine Learning
Module 2: Machine Learning Methods
Module 3: Supervised Machine Learning Linearr Regression
Module 4: Supervised Machine Learning Polynomial Regression
Module 5: Multiple Linear Regression
Module 6: Multiple Polynomial Regression
Module 7: How to Save Data Model and Load
Module 8: Stock Market Prediction With Linear Regression
Module 9: Standard Scaler
Module 10: Lasso
Module 11: Cross Validation & Pipeline
Module 12: Supervised Machine Learning Classification
Module 13: Label Encoder & Logistic Regression: Titanic
Module 14: Advanced Momentum Trading Strategies Via Volatility and Volume Indicators With RandomForestClassifier
Module 15: Multiple Text Classification With Machine Learning
Module 16: Multi Layer Perceptron
Part 6: DeepLearning With Python
Module 1: Introduction To Deep Neural Networks
Module 2: How to Design Deep Neural Networks
Module 3: House Price Prediction With Artificial Neural Networks & Early Stop Callback
Module 4: One Hot Encoder & Multiple Classification With Artificial Neural Networks
Module 5: Heart Attack Prediction With Artificial Neural Networks& Multiple Early Stop CallBacks
Module 6: Intent Classification Finance Assistant ChatBot With Artificial Neural Networks & Natural Language Processing
Module 6: Convolutional Neural Networks
Module 7: Digit Detection With Artificial Neural Networks: Mnist Dataset
Module 8: Data Preprocessing & Data Modelling For Image Processing
Module 9: Multiple Digit Detection With Convolutional Neural Networks
Module 10: Object Detection With Python
Module 11: Recurrent Neural Networks and LSTM
Module 12: Stock Market Prediction With Recurrent Neural Networks and LSTM
Module 13: Financial Anomaly Detection With Prophet
Module 14: Stock Market Prediction With Prophet
Module 12: Network Anomaly Detection With Recurrent Neural Networks and LSTM
Module 13: Spam Email Classifier Recurrent Neural Networks and LSTM
Module 14: Deep Reinforcement Learning Stock Market Management
Part 7: Generative AI:
Module 1: What is Generative AI?
Module 2: The differences Of Generative AI From Traditional AI
Module 3: Semantic Similarity
Module 4: Sentimental Classification (Positive, Negative, Neutral)
Module 5: Summarization of Text
Module 6: Intent-Classification
Module 7: Summarization of Generated Code
Module 8: Text-Generation
Module 9: Auto-Encoders
Module 10: Credit Card Fraud Detection with Autoencoders
Module 11: Working With Large Language Model Falcon
Module 12: Document-Based Question Answering With Falcon & Langchain
Module 13: Working With Large Language Model Llama 3.1
Module 14: Finance(Fin)-Llama
Module 15: Finetune Large Language Models With LoRa & Quantization
Module 16: Building Multi-Document ReAct Agent For Financial Analysis using LlamaIndex and Qdrant
Module 17: Time Series Forecasting With Chronos
Yapay Zeka İle Sermaye Piyasaları Yönetimi Başvuru Formu
Adınız ve Soyadınız | |
E-Posta Adresiniz | |
Telefon Numarası | |
Çalıştığınız Yer | |
Okuduğunuz Okul |